# **PTI Technologies Inc.**



Warning: Information Subject to Export Control Laws

This document is controlled under jurisdiction of Export Administration Regulations (EAR), 15 CFR parts 730 to 772. Diversion contrary to U.S. law is prohibited

## Situation And Need – Our View

- Aircraft cabin air comes from two sources
  - 50% "Fresh" Air (bleed air from engine / APU compressor section)
    - Exception is 787 ram air
  - 50% Recirculated Air from cabin
- The Recirculated Air is treated today HEPA Filters
  - Removes particulates, viruses, bacteria, fungus
  - Does not handle gases/odors need second media (activated carbon)
- However, "Fresh" Air really has no treatment except Ozone
- The "Fresh" Air component is the driver of air quality
  - Contains aerosols, VOC's, particulates and ozone
  - Creates health/safety issues for flight crew
  - Degrades passenger experience
  - No filtration/removal and low ozone conversion at lower temperatures

An Effective Solution For Bleed Air Filtration Is Needed



## Potential VOC's In Engine Bleed Air

1.1.1-trichloroethane 1,1,2,2-tetrachloroethane 1.1.2-trichloro-1,2,2-trifluoroethane (Freon-113) 1.1.2-trichloroethane 1.1-dichloroethane 1,1-dichloroethene 1.2.4-trichlorobenzene 1,2,4-trimethylbenzenc 1,2-dibromoethane 1.2-dichlorobenzene 1,2-dichloroethane 1,2-dichloropropane 1,2-dichlorotetrafluoroethane (Freon-114) 1.3.5-trimethylbenzene 1,3-butadiene 1,3-dichlorobenzene 1.4-dichlorobenzene 1,4-dioxane 2,2,4-trimethylpentane 2.3-dimethylpentane 2-butanone (methyl ethyl ketone) 2-hexanone (methyl butyl ketone) 3-Methylhexane 4.4'methylene bis(o-chloroaniline) 4-ethyl toluene 6methyl5heptene2one acenaphthene acetaldehyde < acetone <acrolein 🗲 AHTN anthracene benzenc benzo(a)anthracene benzo(a)pyrene <-benzo(b)fluoranthene

benzo(k)fluoranthene benzyl acetate benzyl chloride bipbenyl bromodichloromethane bromoform (tribromomethane) butyl benzyl phthalate carbon disulfide carbon tetrachloride (tetrachloromethane) chlorobenzene chloroform (trichloromethane) chrysene cis-1,2-dichloroethene cis-1,3-dichloropropene cis-permethrin cyclohexane decanal di-2-ethyl hexyl phthalate dibenzo (a,h)anthracene dibromochloromethane dibutyl phthalate dichlorodifluoromethane (Freon-12) diethyl phthalate cthanol < othyl acetate ethyl chloride (chloroethane) ethylbenzene fluoranthene fluorene formaldehyde <-heptane hexachloro-1,3-butadiene hexane hexyl cinnemal HHCB Indeno(1,2,3-cd)pyrene isoprene (2-methyl-1,3-butadiene) isopropyl alcohol

limonene m&p-xylene methyl bromide (bromomethane) methyl chloride (chloromethane) methyl isobutyl ketone (4-methyl-2-pentanone) methyl methacrylate methyl tert-butyl ether methylevelohexane methylene chloride (dichloromethane) naphthalene ponanal octanal o-xylene PCB 11 PCB 52 phenanthrene phenethyl alcohol propene propionaldehyde Pyrene styrene Sumithrin tetrachloroethene tetrahydrofuran toluene trans-1,2-dichloroethene trans-1,3-dichloropropene trans-Permethrin trichloroethene trichlorofluoromethane (Freon 11) tri-m,m,p-cresyl phosphate tri-m,p,p-cresyl phosphate tri-m-cresyl phosphate tri-o-cresyl phosphate tri-p-cresyl phosphate tris(2-chloroethyl)phosphate tris(dichloro)phosphate vinyl acetate vinyl chloride (chloroethene)

#### Many Potential VOC's In Bleed Air – Complex Problem To Remove All



benzo(e)pyrene

benzo(ghi)perylene

### Situation And Need – Our View

- What are the challenges for effective solution for Bleed Air?
  - Which VOC's to remove which possible ones to choose?
  - How to best remove aerosols (liquids, particulates)?
  - How to get better ozone conversion especially at low temperatures?
  - Packaging filter for aircraft (footprint, weight, certification, life)?
  - How to make installation easy (new, existing)?
  - How to make cost effective to install, operate and maintenance?
- Fortunately, there is a solution
  - New technology for bleed air in Fuel Tank Inerting Systems (FTIS)
  - Simple design, lower weight, long life, economical costs
  - Handles aerosols, VOC's, and ozone in a single envelope
  - Combined with recirc filters better cabin air quality
- Filter design tested ready to fit to aircraft, working with partners

**Technology Now Tested And In Hand For Bleed Air Solution** 

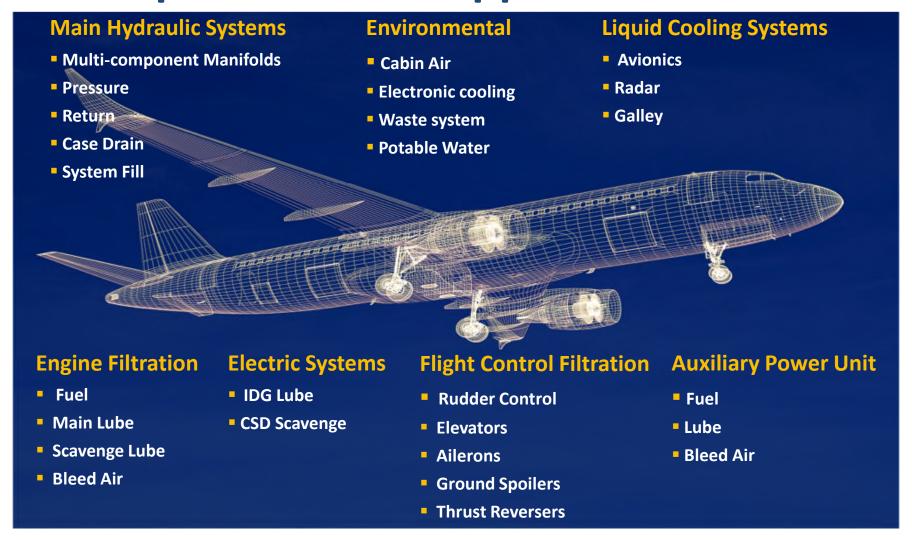


## What's At Stake

- Our industry flight crews
  - Contaminated air has impaired and incapacitated flight / cabin crew
- Our industry passengers
  - Exposure to chemicals, fumes and ozone public health risk
- Our industry manufacturers
  - Idea of filtration now new considered since 1950's but lack of solutions
- Air Accident Investigators globally and Law Courts
  - Contaminated air exposure risk to flight safety, crew and public health
  - Understanding of chemicals present during these exposure events
  - Increased financial and legal liability
  - Call on regulators / Governments to mandate effective "bleed air" filters and contaminated air warning sensors on passenger aircraft

**Call To Action – Solutions Needed For Crew And Passengers** 



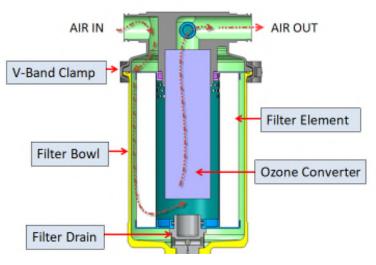

## PTI's Pedigree In Air Filtration

- Who is PTI Technologies
  - World leader in aviation/aerospace filtration for over 60 years
  - Filtration for all aircraft fluids hydraulics, air/bleed air, fuel, water, lube
- Our experience and pedigree in air filtration
  - We have supplied air filtration for military aircraft since the 1980's
    - Special media developed to capture dangerous gases/chemicals/particulates
  - Continued development for military today cabin air and breathing air
  - Developed / certified of air filtration for Space Launch System (gases)
  - Developed / certified / in-service HEPA Cabin Air Filters for airlines
  - Developed / certified / in-service engine / APU bleed air filtration
  - Developed / tested filtration combined with custom absorbents
  - Developed / tested patented FTIS filtration (Aerosols, VOC's, HEPA, Ozone)

PTI Has Pedigree And Technology For Bleed Air Solution



## **Aerospace Product Applications**





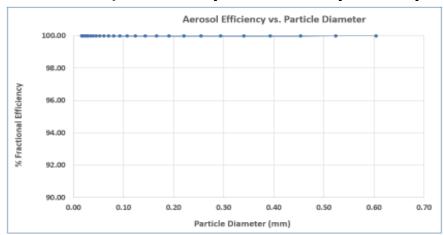

## PTI's Solution To Bleed Air Filtration

- Solution Advanced Technology Filtration developed for FTIS
  - Removes Aerosols (Liquids, Particulates), Gases/VOC's, Ozone + HEPA
  - Incorporates multilayer media, active absorbent and ozone conversion
  - Proven patented technology and designs
- Tested to EN / ISO Standards
  - Aerosols (Liquids, Particulates)
  - Challenge Gases single and mixed
  - Ozone conversion

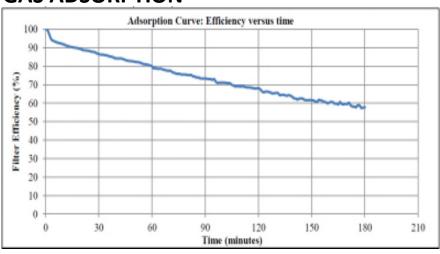




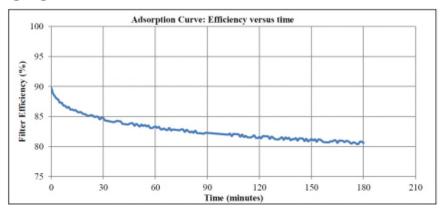


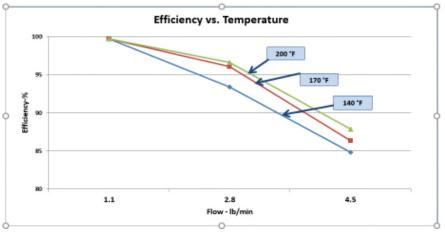

# **Bleed Air Filtration Testing – EN4618-2009**

| Category                               | Group                  | Compound                             | CAS No.    | Bio-<br>effluents | Cabin<br>Interior | Solvents   | External<br>Conditions | Exhaust    | Oils,<br>Lubricants<br>&<br>Hydraulics | Fuel |
|----------------------------------------|------------------------|--------------------------------------|------------|-------------------|-------------------|------------|------------------------|------------|----------------------------------------|------|
| Inorganic<br>Compounds                 |                        | Carbon<br>Dioxide                    | 124-38-9   | <u> </u>          |                   |            | ⊠ "                    | <b>⊠</b> ° |                                        |      |
|                                        |                        | Carbon<br>Monoxide *                 | 630-08-0   |                   |                   |            |                        |            |                                        |      |
|                                        |                        | Nitrogen<br>Oxides <sup>b</sup>      | 10102-44-0 |                   |                   |            |                        | 130        |                                        |      |
|                                        |                        | Ozone <sup>a</sup>                   | 10028-15-6 |                   |                   |            |                        |            |                                        |      |
| Inorganic /<br>Organic<br>Particles    |                        | Particles,<br>aerosols               |            | <b>E</b> *        | E 2,0             |            | ◙                      | 2          | 100                                    | 図    |
|                                        |                        | Micro-<br>organisms                  |            | <b>≥</b> °        | ⊠°                |            |                        |            |                                        |      |
|                                        |                        | Endotaxins                           |            | <b>2</b> 4        | <b>3</b> 2        |            | <b>S</b>               |            |                                        |      |
| Aliphatic<br>Compounds                 | Alkanes                | Methane <sup>b</sup>                 | 74-82-8    | 2                 |                   |            |                        | 2          |                                        | Ø    |
|                                        | Ketones                | Acetone *                            | 67-64-1    | d                 |                   | <b>3</b>   |                        |            | □                                      |      |
|                                        |                        | Methyl Ethyl<br>Ketone <sup>a</sup>  | 78-93-3    |                   |                   | 23         |                        |            | 100                                    |      |
|                                        | Aldehydes              | Acetaldehyde *                       | 75-07-0    |                   |                   |            |                        |            | □                                      |      |
|                                        |                        | Acrolein *                           | 107-02-8   |                   |                   |            |                        | 2          | □                                      | 120  |
|                                        |                        | Formaldehyde <sup>a</sup>            | 50-00-0    |                   | ⊠*                | <b>3</b>   |                        | 2          | ■                                      | Ø    |
|                                        | Halogen<br>Derivatives | Methylene<br>Chloride <sup>a</sup>   | 74-87-3    |                   |                   | □          |                        |            |                                        |      |
| Aromatic<br>Compounds                  |                        | Benzene *                            | 71-43-2    |                   |                   |            |                        | <u> </u>   |                                        |      |
|                                        |                        | Tricresyl<br>Phosphate <sup>b</sup>  | 1330-78-5  |                   |                   |            |                        |            |                                        |      |
|                                        |                        | Toluene                              | 108-88-3   |                   |                   | <b>D</b> * |                        |            |                                        |      |
| Polycyclic<br>Aromatic<br>Hydrocarbons |                        | Benzo (alpha)<br>Pyrene <sup>b</sup> | 50-32-8    |                   |                   |            |                        | <u> </u>   |                                        |      |
|                                        |                        | Naphthalene <sup>b</sup>             | 91-20-3    |                   |                   |            |                        | -          |                                        |      |




# **Testing Results**


#### **AEROSOLS** (fine solid particles / liquid droplets)




#### **GAS ADSORPTION**



#### **OZONE**







### What's Next

Next step is to bring bleed air filtration in-service to airlines

- Specifications (bleed air, filtration) to optimize design / performance
- Prototypes / flight test program
- Certification STC and / or OEM
- Retrofits / new production
- Need airline partners collaborate on design/installation/test
- Need OEM support for simple solution
  - Certify across platforms
  - Create aftermarket support documentation, manuals

**Technology Is In Hand To Address The Bleed Air Filtration Need** 



## For More Information / Partnering

#### **CONTACT:**

David Conrad, VP, Business Development dconrad@ptitechnologies.com

+1 (805) 604-3844

